
 

 

Abstract-Real-time EEG processing is desired as a 
communication tool for disabled individuals. However, motion-
related potential as the cerebral phenomenon corresponding to 
the subject’s intention for autokinesia is embedded in the 
background potential, therefore, the real-time extraction of 
significant signal is quite difficult. 
 In this paper, our aim is a real-time readiness-potential 
extraction from EEG with relatively small number of scalp 
electrodes and the extraction of the difference among readiness-
potentials based on different autokinesias by means of the 
combination of Independent component analysis (ICA) and 
scalp Laplacian. 
 
Keywords - Independent component analysis, readiness-potential, 
scalp Laplacian 

 
I. INTRODUCTION 

 
For disabled individuals who suffered from postnatal 

disorder such as Amyotrophic Lateral Sclerosis (ALS), a way 
of communication, i.e. transmission of their emotion and 
intention, is strictly limited. Brain-computer interfaces (BCIs) 
are systems which analyze the electroencephalogram (EEG) 
of the patient in order to allow communication with the outer 
world. In this paper, we direct our attention to the extraction 
of the patient’s intention to move the body. 

The EEG of healthy body’s movement has been observed 
in various researches and the averaging potential shows that 
the movement-related potential consists of the readiness-
potential, pre-motion positivity and afferent potential. 
Although the movement-related potentials could correlate 
with the patient’s intention, patients who suffer from ASL 
cannot move the muscles and consequently electromyography 
(EMG) and motor potential are hardly generated. ALS is a 
devastating neuromuscular disease that strikes adults in the 
prime of life. Fig.1 shows a rough sketch of the nervous 
system for movement control. 

 

 
Fig. 1 Nervous system for movement control 

Autokinesia originates from the intention for movement, 
i.e. movement order in the cerebral cortex and it interacts 
with some regions in the cerebellar cortex. The order for 
movement generated in the cerebral and cerebellar cortex is 
transmitted to motoneuron along the spinal cord and 
consequently the movement occurs and it stimulates 
motoneurons which control the movement of voluntary 
muscles. Therefore, if the suffered disease is a postnatal 
disorder in the motoneurons as well as ALS and the patient’s 
motor cortex and other movement-related cortices are intact, 
the intention for movement is expected to generate significant 
activities in these cortices. Therefore, the readiness-potential 
which is originated in the cortical activities is a candidate for 
a probing signal which represents the patient’s intention. 

Dipole Tracing (DT) has given a great contribution to the 
comprehension of brain activities. A representative strategy 
for DT is a procedure of (1) modeling the conductive head 
model and (2) estimation of the positions and the amplitude 
of dipoles by solving the inverse problem based on the head 
model. We propose another way of an acquisition of 
movement-related potential as the dipole without the explicit 
usage of the head model [1]. We only use a priori 
information that each dipoles as cortical activities are 
independent and the EEGs are the linear transformation of the 
dipoles. 

In this paper, we aim at the real-time extraction of the 
readiness-potential from EEGs and, furthermore, the 
extraction of the difference among readiness-potentials based 
on different autokinesias, e.g. appendicular information 
separation. 
 

II. METHODOLOGY 
 

Unfortunately, human thinking process, i.e. the brain 
activity, is quite complicated in comparison with that of other 
creatures. Therefore, the evoked and movement-related 
cortical potentials are embedded in the spontaneous potentials 
originated in various brain activities, so that the extraction of 
these potentials is extremely difficult. 

 
A Averaging method 

Averaging method has been mostly used as a standard 
way of the repetitive signal extraction. It has clarified that the 
movement-related cortical potentials are observed as a 
compound of readiness-potential, pre-motion positivity, 
motor potential and afferent potential. In case of seeking the 
readiness-potentials, reverse averaging on the basis of EMG 
trigger is a common method. 
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 Averaging method relies on an assumption that all the 
background potentials are independent from the evoked 
potentials and independent identically distributed (i.i.d.) so 
that those background potentials, e.g. spontaneous Alpha 
rhythms, are cancelled out according to the law of large 
number. 

The background potential is originated in various cortical 
activities, so that it is quite difficult to verify the validity of 
the assumption but the experimental results have been given a 
lot of significant information related to the cortical activities. 
For instance, in case of right finger movement, a remarkable 
potential which corresponds to movement-related potential 
appears around F3 (International 10-20 system) and it reflects 
the cortical activity in the motor area of the left frontal lobe. 

Thus, averaging method is simple but it gives very 
effective information. However, it is far from real-time 
processing; therefore, averaging method is out of touch with 
reality as an interface for disabled individuals which requires 
a real-time perception of meaningful potential. 
 
B Independent component analysis (ICA) 

EEG is a potential on the scalp and it is a reflection of 
electrical activities in the cortices. Moreover, the electrical 
activities originate in the depolarizations of enormous number 
of neurons. Therefore, it is not realistic to detect all the 
neuronal activities. Specific functions of information 
processing in the brain strongly correlate with specific 
regions in the brain. For instance, visual areas for visual 
processing are bound in some regions in the occipital lobe. 
Motion-related regions, i.e. motor cortex etc., are found in 
some regions in the frontal lobe. When a group of active 
neuron is localized on a small region of the cortex, the group 
is approximated as a single-dipole. 

The DT based on the conductor head model is derived 
from the Maxwell’s equations and it indicates the linear 
correlation between the dipoles and the scalp potentials. 
When U represents a vector whose elements denote signals 
observed by scalp electrodes and V represents a vector whose 
elements denote localized cortical activities, the scalp 
electrical signal vector U is given by the product of a linear 
matrix A and the cortical activity vector. 

AVU =              (1) 
Here, on the basis of the above facts, we assume that (1) 

principal movement-related cortical potentials are localized 
on fixed locations and independent to each other and (2) each 
observed EEG is regarded as a linear combination of those 
independent dipoles and background potential. Independent 
component analysis (ICA) [2] aims at finding a linear 
representation of non-Gaussian data so that the components 
are statistically independent. ICA has given some successes 
in artifact indentifications and cortical activity extractions 
[3],[4],[5]. 

For n observed time series data xi(t) which are linear 
mixtures of independent sources sj(t), we drop the time index 
t and give x, s as the n dimensional vectors with components 
xi(t) and si(t) , i=1,…,n respectively. We look upon each x 

and s as samples of random vector. Then, for given mixing 
matrix A, the mixing model is written as 

Asx = .             (2) 
Our goal is finding W as an inverse of A and acquiring s as 

Wxs = .             (3) 
The independency of s is equivalent to non-Gaussianiety of s, 
therefore, now our aim is transformed to the search for W 
which leads the linear mixing vector y to have maximum 
measure of non-Gaussianiety. 

Wxy =              (4) 
Non-Gaussianiety is evaluated by measurements such as 

Kurtosis, Negentropy, mutual information. In this paper, we 
applied the FastICA [6]. 
 
C Scalp Laplacian  

Scalp potential generated by cortical activities has low 
spatial resolution because of  low conductivity of  the skull 
etc. Body-surface Laplacian is used for the enhancement of 
spatial resolution of the scalp potentials and it gives better 
reconstruction of cortical potentials in comparison with the 
case of the reconstruction based on the scalp potentials [1],[7]. 
The Laplacian EEG is proportional to the second spatial 
derivative of the electrical potential on the surface, and can be 
interpreted as an equivalent charge or the derivative of the 
normal component of the current density on the body surface. 
In our research, we derive the Laplacian EEG by numerical 
analysis based on scalp potentials on International 10-20 
system. 
 
D Our method 

As mentioned in the above, our aim is the readiness-
potential detection. We use (1) ICA and (2) scalp Laplacians 
and ICA for the processing of acquired EEGs. 

ICA cannot identify the particular order of the 
independent components, i.e. localized cortical activities. 
Therefore, even if we can extract a significant signal for 
detecting a readiness-potential to a certain observed EEG, it 
does not give information such as which independent 
component denotes the readiness-potential for other observed 
EEGs. We assume that whenever the subject intends to move 
a specific part of his body, the cortical activity related to the 
readiness-potential occurs in exactly the same part of the 
brain cortex and, furthermore, the mixing transformation is 
invariable. Then, if we can acquire an appropriate 
independent components and accordingly an appropriate 
mixing matrix, the mixing matrix could be used to other 
observed EEGs. Thus, the significant signals, i.e. the cortical 
activities related to the readiness-potentials, are expected to 
appear in the same order. 

For each EEG segments, e.g. e1 and e2, if the segments are 
independent to each other, each ICA processing of these 
segments is expected to produce uncorrelated independent 
component {si

1}i∈n and {si
2}i∈n and similarly the mixing 

matrices A1 and A2 is expected to be uncorrelated. n is the 
number of independent source. Our assumption is that A1 and 



 

 

A2 are equivalent so that if we derive A1 on the basis of e1, it 
can be applied to e2 and the order of obtained independent 
sources {si

2}i∈n are same as {si
1}i∈n. 

 
III. EXPERIMENT 

 
A Experimental setup 
EEG acquisition system: 

The EEG acquisition system used in our research is 
depicted in Fig.2. 

The EEGs were recorded with scalp electrodes (a) 
attached to the scalp and positioned at C3, C4, Cz, F3, F4, P3, 
P4, T3 and T4 (International 10-20 system). Recording were 
carried out with a Digital Bio-Amplifier 5200 (NF Electronic 
Corp.), consisting of a EEG Headbox 5202 (14 EEG channels, 
sensitivity: 409.6µVpp/FS, 2 EMG channels, sensitivity: 
10.24mVpp/FS, time constant: 0.3s) and a Processor Box 
5201 (IIR digital filtering, decimation). In the headbox (b), 
filters with 1.6Hz-50Hz bandwidth are inserted and the 
sampled at the rate of 1kHz. Processor box (c) collects the 
digital signal from the headbox. Then, the EEG is processed 
by a PC (d) (Pentium III 550MHz processor, 392Mbytes 
memory). 

All measurements were carried out inside a shield room 
(Nihon Itagarasu Kankyo Ameniti NEA Corp., model “Mag 
Savor 15”) ensuring 60dB attenuation for electric waves 
(0.2~18MHz) and of 40dB for magnetic waves (0.2~1.9MHz).  
Subject: 

A healthy male volunteer aged 25 was a subject for this 
experiment. 
Experimental task and the recording: 

Four movements corresponding to movements of 
subject’s extremities, i.e. computer mouse clicks as grip 
movement of both hands and stepping of electrical button as 
step movements of feet, are selected as the experimental task. 
Each movement is repeated 100 times successively. 

 
B EEG processing and data analysis 

Starting trigger of each movement is marked as the 
electrical signal by a click or stepping. Each EEG segment of 
a period between 0.75s before the trigger and 0.25 after the 
trigger, i.e. the period which conspicuously characteristic 
feature is observed in averaging method, is used for the EEGs 
processing. The number of segments for each movement is 
100 respectively. 

Each EEG segment was processed by (1) averaging 
method, (2) ICA and (3) scalp Laplacians + ICA. 
 

 
Fig. 2 EEG acquisition system 

IV. RESULTS 
 

Fig.3 shows a 9-channel set of EEG recordings of right 
hand grip movement. 

Fig.4 shows the independent source estimates by means of 
ICA of the EEGs of Fig.3. It is hard to pick up the 
characteristic features of the movement-related source signals. 

Fig.5 shows the independent source estimates by means of 
ICA of five EEG (Fig.3) Laplacians with two neighborhoods, 
i.e. C3  with the neighborhoods T3, Cz, C3 with F3, P3, C4 
with T4, Cz, C4 with F4, P4, and Cz with C3, C4. In Fig.5, 
the second signal seems to represent the characteristic feature 
of readiness-potential. 

Fig.6 shows the independent source estimated by means 
of ICA of two EEG (Fig.3) Laplacians with four 
neighborhoods, i.e. C3 with the neighborhoods T3, Cz, F3, P3, 
and C4 with the neighborhoods T4, Cz, F4, P4. In Fig.6, the 
second signal has a quite similar feature to that of the 
readiness-potential, i.e. slow negative potential, in spite of the 
expectation that the dimension of the EEGs, i.e. two channels, 
is too simple to deal with the scalp potential and the extracted 
signals are unreliable. The arrangement of the scalp 
Laplacians mignt have a good effect on the result, because the 
movement of one side of the body is expected to cause a 
conspicuous difference in both cortical activities. 
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Fig. 3 9-channel set of EEG. 
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Fig. 4 ICA of EEGs of Fig.3. 



 

 

We applied the inverse matrix generated in ICA of Fig.6 
to another EEG segment related to the same autokinesia as 
Fig.6, i.e. right hand grip movement, to evaluate the 
robustness of the acquired inverse matrix. Fig.7 shows the 
linearly transformed signals. These signals are similar in 
features to the signals in Fig.6, i.e. the readiness-potential 
appears in the second signal. This result indicates the 
robustness of the order of the independent components 
derived by the inverse matrix, and consequently the 
robustness of the matrix. 
 

V. DISCUSSION 
 

Although we found some features related to readiness-
related potential, we cannot find definite characteristic 
features among different types of autokinesias. Therefore, we 
need more experiments with more electrodes for the 
extraction of distinct differences in readiness-potentials 
among different types of autokinesias. 

In this paper, we proposed the fixed matrix method in 
which a fixed matrix generated by a EEG is used as a 
universal matrix. This method is proposed on the basis of an 
assumption that the mixing matrix is fixed at least when the 
type of autokinesias is same. However, the different type of 
the autokinesia is expected to evoke the cortical activity in the 
different region on the cortex. Therefore, for a motion 
detection, we have to (1) prepare a set of universal matrices 
and the template signals which correspond to each types of 
autokinesia respectively and (2) adopt the best matching 
template and the equivalent type of as the estimated 
movement. 

 
VI. CONCLUSION 

 
In this paper, we proposed a readiness-potential extraction 

method based on the compound of ICA and scalp Laplacians. 
The experiments showed some significant signal extractions 
from the EEGs which gave the promising expectation for 
real-time extraction of readiness-potential from the EEGs. 
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Fig. 5 ICA of five EEG Laplacians. 
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Fig. 6 ICA of two EEG Laplacians. 
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Fig. 7 Linearly transformed signals. 
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